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NOTES ON BERGMAN PROJECTION TYPE
OPERATOR RELATED WITH BESOV SPACE

K1 SEonc CHOT*®

ABSTRACT. Let Qf be the maximal derivative of f with respect
to the Bergman metric bg. In this paper, we will find conditions
such that (1— || z |)°(Qf)?(z) is bounded on B. We will also
find conditions such that Bergman projection type operator P, is
bounded operator from LP(B,du,) to the holomorphic Besov p-
space B, (B) with weight s.

1. Introduction

Throughout this paper, C™ will be the Cartesian product of n copies
of C. For z = (21, 22,...,2n) and w = (wy, wa, ..., wy) in C", the inner
product is defined by (z,w) = >, z;w; and the norm by || I? =
(z,2).

Let Q be any bounded domain in C". Let f € C1() and ¢ € C™.
The maximal derivative of f with respect to the Bergman metric bq is
defined by

5 = sup LTELO
@) e ba(z6) =9
where
(df (2),6) = {agij)fi + 8@?)@

i=1
If f e H(Q) where H(Q) is the set of holomorphic functions on €2,
then the quantity @ f is reduced to

[(V£(2),8)]
Qf(z) = sup DIELSL e ceen
lel=1  ba(z,€)
where Vf(z) = ((%fl’ e (%;) is the holomorphic gradient of f.
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For Lebesgue measure v in C", let d\(z) = K(z,z)dv(z) where
K (z,w) is Bergman kernel. Let dg(2) be the Euclidean distance from z
to the boundary 0€2. For 0 < p < oo and s € R, the holomorphic Besov
p-sapce B,(§2) with weight s is defined by the space of all holomorphic
functions f on §2 such that

£ llps = {l}@fﬁ%@énwfdA@>}p<<p.

In this paper, we will consider the case where €) is open unit ball
in C". Let B be the open unit ball in the complex space C" and S
the boundary of B. For z € B,¢ € C", the Bergman metric(on B)
bp: B x C" — R is given by

b53(2,6) = [ 2 P € P + 1= 6]
1=z [%)?

The quantity @f for the unit ball B is invariant under the group
Aut(B) of holomorphic automorphisms of B. Namely, Q(fop) = (Qf)o
¢ for all p € Aut(B).

Let v be the Lebesgue measure in C" normalized by v(B) = 1. The
Bergman space L2(B,dv) is defined to be the subspace of L?(B,dv)
consisting of analytic functions.

Fix a point z € B. Since the functional e, given by e.(f) = f(2), f €
L?(B,dv), is continuous, there exists a function K (-, 2) € L2(B,dv) such
that

ﬂd=éﬂmwawW)

by the Riesz representation theorem. The function K(z,w) is called
the Bergman reproducing kernel in L2(B,dv). It is well known that
K(z,w) = W(See [9]).

Let 0 < p < oo and s € R. The holomorphic Besov p-spaces B,(B)
with weight s is defined by the space of all holomorphic functions f on
the unit ball B such that

1 Mlps = {/B(Qf)p(Z)(l— [ H2)Sd>\(2)}p < o0,

Here d\(z) = K(z,2)dv(z) = (1— || z ||?)™ !dv(z) is an invariant
volume measure with respect to the Bergman metric on B.

For a fixed p € (0,00), B,(B) is an increasing family of function
spaces in s; that is, if —oo < s < t < +oo, then B3(B) C Bl(B).
The holomorphic Besov p-space B;(B) with weight s include many well
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known spaces as special case. Bj(B) is the usual Hardy space HP(B)
for s = n, the Bergman space LL(B) for s = n + 1. In particular,
the diagonal Besov space BS(B) are shown to be the Mobius invariant
subsets of the Bloch space(See [3]).

In recent years, there have been many papers focused on studying
the Besov space and it’s applications(See [4],[6],[7] and [10]).

In section 2, we will find conditions such that (1— || z ||)*(Qf)P(2) is
bounded on B.

The orthogonal projection operator P from L?(B,dv) to L?(B,dv)
is denoted by

Pr(z) = /B Fw)K (2, w)dv(w).

P is called the Bergman projection. The Bergman projection is used in
many areas related with Hankel operators and Toeplitz operators(See
[1],[8],[11] and [12]).

The measure pu, is the weighted Lebesgue measure:

dup(z) = cp(1— || 2 |*)dv(2)

where r > —1 is fixed, and ¢, is a normalization constant such that
ur(B) = 1. Define the Bergman projection type operator P, by

Pt = [ o= ﬂﬂ“’)))n+r+ldur<w>.

In section 3, we will find conditions such that P, is bounded operator
from LP(B,d,) to the holomorphic Besov p-spaces Bj(B) with weight
s.

2. Holomorphic Besov p-space B;(B) with weight s

The traditional holomorphic Besov space B,(€2) is a subspace of L2(2)
with semi-norm

| flls, = {/Q(Vf)p(z)SQ(z)pdA(z)}p < 00

where 0q(z)/2 is the distance from z to 9. It is known that the fact
Jo da(2) %dv(z) = oo when ¢ > 1 implies that B,(Q2) = C when p < n
and () is a smoothly bounded strictly pseudo convex domain in C".

If Q is the unit ball B in C™ and v is the Lebesgue measure in C"
normalized by v(€2) = 1, we can find the following result.
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THEOREM 2.1. Let n >2 and 0 < p < 2n. If f € H(B) and
| @) <,

then f is constant.
Proof. See [3], Lemma 2.11. O

These results show that the above semi-norm is not natural when
p < n. In this paper, we will consider the holomorphic Besov p-space
B, (B) with weight s.

Let a € B and let P, be the orthogonal projection of C™ onto the
subspace generated by a, which is given by Py = 0, and

Paz:<z’a>a, if a#0.
(a,a)

Let Q, = I — P,. Define ¢, on B by

a—Piz— 11— al|*Qaz

1—{(z,a) .
THEOREM 2.2. For every a € B, ¢, has the following properties:
(i) The identity

Pa(2) =

- lal®)- )
1-— <(Pa(z)7(pa(w)> - (1 — (Z,CL>)(1 - <a,w>)

holds for all z € B,w € B.
(ii) The identity
A=lal»a—1=]?

1— | palz) |I* =
I ¢ale) | B

holds for every z € B. B B
(iii) ¢4 is a homeomorphism of B onto B.

Proof. See [9], Theorem 2.2.2. O

THEOREM 2.3. For z € B, c is real, t > —1, define

1— || w|?)
L) = [ ”Hnﬂﬁcﬁdv(w)

1 — (z,w

Then,
(i) Ic4(2) is bounded in B if ¢ < 0;
(ii) o.(2) = —log(1 || = |*) as || = = 17;
(iti) I¢(2) = (1= z||®)Cas | z|— 1" if ¢>0.

~

~
~
~
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Proof. See [9], Proposition 1.4.10. O
LEMMA 2.4. If f is holomorphic and Qjﬂ( ”)2 is Lebesgue integrable
on B, then

QF(0) < (n+1) /B QF(w)(1 — || w 2 dA(w).

Proof. By the definition of Bergman metric,
A== 1P EI* + (261

bp*(2,€) = (n+1)

T GE
A= PEl + = 1)
n+1
=) TEIRE
Le |
n+1)—————.
=D e

By the mean value theorem,

ftn) = [ 7o ufw)iv(o
for f € H(B),ne€ B and t € [0,1].

(V£ = /B V1), [ ente] o)
[ (Vi w)n = G >du<w>]
Vf wﬂ?)g >
/ ‘ ”iwnj; ” ‘bB(—w,n—<wﬂ7>w)dV(w)
B m)
<(n+1) / Qf (w)b(—w, 7 — (w, nyw)dv(w)
B
<(n+1) Bmdu(w)
<(n+1) /B (1 [ w [2)"QF (w)dA(w).
Thus,

QF(0) < (n+1) /B QF(w)(1 — || w 2 dA(w).
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THEOREM 2.5. Let 1 < p < oo. If s is a real number such that

—np < s <nand || flps< oo, then (1— | 2z |[|*)*(Qf)P(2) is bounded
on B.

Proof. Let %+%:1Whereq>1. If s<n,thent=(n—s)g+s—
n—1>—1. If —mp < s, then nq+ s¢ — s > 0. By Theorem 2.3,

. 2\(n—s)q v
</B (1|1 EJ §)>|2nq A-1¢ ”QW(Q)

(1— | € I*)? 1/q
B (/B 11 — (2, &)|nH1+t+(na+sq—s) dV(€)>

(1= | = |7y st

~ (1= | 2 ),
By Lemma 2.4,
Qf0) < (n+1) [ QFw)(1 = [l w [P aAw).
Put € = ¢, (w). By Theorem 2.2,
QF(2) = Q(f o 22)(0)
<+ 1) [ QU o))t~ || w ) dAw)
B

< (n+1) /B QIO — || 92(6) IIP)"dA(E)

- ||z )= &1)"
1= (2,6

1/p
<)) 2 P ( [ @ren-e u?fcu(g))

B 2\(n—s)q v
</B (1!1 ﬂfz’,’ §)>|2nq (1=1¢ HQ)Sd)\(O)

where the last inequality follows from Holder inequality for % + % = 1.
This implies that

Qf(z) <CO—[ =) f
for some constant C. This shows that if s is a real number such that

—np < s <nand || f|ps< oo, then (1— | 2 ||?)*(Qf)P(z) is bounded
on B. O

< (n+1) /B Qr (o) dN(E)

|p7S
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3. Bounded Bergman projection type operator related with
Besov space

In [10], Timoney showed that the linear space of all holomorphic
function f: B — C which satisfy

sup(1— || 2 [|*) [| Vf(2) [[< o0
zEB
is equivalent to the space of all holomorphic function which satisfy

sup Qf(z) < oo.
z€B

THEOREM 3.1. Let p > 2n and s > n. Then for every f € H(B),
/ @P()(1- || = [P)dA(z) ~ / | V() P (1= | = [2)PHdA()
B B

Proof. See [3], Lemma 2.8. O
Let L2 . = L2(B,dpu,) be the subspace of L*(B, dy,) consisting of an-
alytic functions. If we equip L7, with the norm || f [l2,= +/ [5 | f1?dpr,

then Lg’r is a Banach space for each r > —1.

Fix a point z € B. Since the functional e, given by e,(f) = f(2), f €
L2, is continuous, there exists a function k., € LZ’T such that

f(2) = /B £ (Yo (@)t (0)

by the Riesz representation theorem. The function K, (z,w) = k. ,(w)
is called the weighted Bergman kernel. Also it is well known that
1
(1= (z, w))r+ntl
(See [9]). Tt was shown in [5] that if f € L, ,r > —1, then

flw
16 = [ G et

Suppose 1 < p < +o0o and r > 0. Let L}, be the subspace of
LP(B,dp,) consisting of analytic functions. Define Bergman projection
type operator P, by

K. (z,w) =

f(w)
P. = dpy(w).
)= J T e
Since P.f = f for all analytic f in L'(B,du,), P is a projection from
LY(B,dp,) onto LL(B,du.).
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In [2], the author proved that P, is a bounded projection operator
from LP(B,dv) onto LL(B,dv).

In the proof of Theorem 3.2, we will use C),, to denote constant
depending only on n and r, but it is not always the same at each ap-
pearance.

THEOREM 3.2. Let p > 2n and r > 0. If f € LP(B,dpu,), then
I Prf llp,s< Crr || F o (B.du0)
for s > 2n+1r+ 1.

Proof. Differentiating under the integral sign, we obtain

) _ f(w)(—w;))
azj(Prf)(z)_(n—kr—l—l)/ 1 G, w)yrirsadir(©)

for j =1,2,--- ,n. This shows that

1RG5 o [ o i)

Let % + % = 1. By the Holder inequality,

I VEf(2) |I”

1 p/q
p
—Cnr/|f P dp (w </ T zw)|q(n+r+2>d“7”( )) :

By Theorem 2.3,

1
/B |1 — (z,w)|a(ntr+2) dpr (w)
(A= [lw )"

B |1 — (z,w)]an+r+2) (w)

= (1= [l w [*)
= cr/B 11 — (2, w)|rH1+r+i+(a—1)(n+r+2) dv(w)
~ (1 || 2 )i D),

By Theorem 3.1,
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| BB, = /B QPFP(=)(1- | = [2)*dA(2)
~ /B (L= [ = 2P | VPof(2) P (1 || = [2)dA2)
< Cor 1 Wiy [ (1112 1P
1 p/q
(/B 11— (2, w)[dntr+2) d“"(“’)> (1= = I)dA(z)

S Cn,r || f ||}[7,P(B,dur)

/(1 — || 2 |2 /OO a- D) (4 2)) gy ).
B

Ifs>n—p+(p/q)(1+(¢g—1)(n+7+2)) =2n+7r+1, then
H P.f Hp,sS Cm‘ H f HLP(B,d/LT) :
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