NOTES ON BERGMAN PROJECTION TYPE OPERATOR RELATED WITH BESOV SPACE

KI SEONG CHOI*

ABSTRACT. Let Qf be the maximal derivative of f with respect to the Bergman metric b_B . In this paper, we will find conditions such that $(1- \parallel z \parallel)^s (Qf)^p(z)$ is bounded on B. We will also find conditions such that Bergman projection type operator P_r is bounded operator from $L^p(B, d\mu_r)$ to the holomorphic Besov p-space $\mathcal{B}_p^s(B)$ with weight s.

1. Introduction

Throughout this paper, \mathbb{C}^n will be the Cartesian product of n copies of \mathbb{C} . For $z=(z_1,z_2,\ldots,z_n)$ and $w=(w_1,w_2,\ldots,w_n)$ in \mathbb{C}^n , the inner product is defined by $\langle z,w\rangle=\sum_{j=1}^n z_j\overline{w_j}$ and the norm by $\|z\|^2=\langle z,z\rangle$.

Let Ω be any bounded domain in \mathbb{C}^n . Let $f \in C^1(\Omega)$ and $\xi \in \mathbb{C}^n$. The maximal derivative of f with respect to the Bergman metric b_{Ω} is defined by

$$\hat{Q}f(z) = \sup_{\|\xi\|=1} \frac{|\langle df(z), \xi \rangle|}{b_{\Omega}(z, \xi)}, \ z \in \Omega$$

where

$$\langle df(z), \xi \rangle = \sum_{i=1}^{n} \left[\frac{\partial f(z)}{\partial z_i} \xi_i + \frac{\partial f(z)}{\partial \overline{z}_i} \overline{\xi}_i \right].$$

If $f \in H(\Omega)$ where $H(\Omega)$ is the set of holomorphic functions on Ω , then the quantity $\hat{Q}f$ is reduced to

$$Qf(z) = \sup_{\|\xi\|=1} \frac{|\langle \nabla f(z), \xi \rangle|}{b_{\Omega}(z, \xi)}, \quad z \in \Omega, \quad \xi \in \mathbb{C}^n$$

where $\nabla f(z) = (\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n})$ is the holomorphic gradient of f.

Received July 02, 2015; Accepted July 22, 2015.

2010 Mathematics Subject Classification: Primary 30H05; Secondary 28B15.

Key words and phrases: Besov p-space, Bergman projection.

For Lebesgue measure ν in \mathbb{C}^n , let $d\lambda(z) = K(z,z)d\nu(z)$ where K(z,w) is Bergman kernel. Let $\delta_{\Omega}(z)$ be the Euclidean distance from z to the boundary $\partial\Omega$. For $0 and <math>s \in \mathbb{R}$, the holomorphic Besov p-sapce $\mathcal{B}_p^s(\Omega)$ with weight s is defined by the space of all holomorphic functions f on Ω such that

$$\| f \|_{p,s} = \left\{ \int_{\Omega} (Qf)^p(z) \delta_{\Omega}(z)^s d\lambda(z) \right\}^{\frac{1}{p}} < \infty.$$

In this paper, we will consider the case where Ω is open unit ball in \mathbb{C}^n . Let B be the open unit ball in the complex space \mathbb{C}^n and S the boundary of B. For $z \in B, \xi \in \mathbb{C}^n$, the Bergman metric(on B) $b_B: B \times \mathbb{C}^n \longrightarrow R$ is given by

$$b_B^2(z,\xi) = \frac{n+1}{(1-\|z\|^2)^2} [(1-\|z\|^2)\|\xi\|^2 + |\langle z,\xi\rangle|^2].$$

The quantity Qf for the unit ball B is invariant under the group Aut(B) of holomorphic automorphisms of B. Namely, $Q(f \circ \varphi) = (Qf) \circ \varphi$ for all $\varphi \in Aut(B)$.

Let ν be the Lebesgue measure in \mathbb{C}^n normalized by $\nu(B) = 1$. The Bergman space $L_a^2(B, d\nu)$ is defined to be the subspace of $L^2(B, d\nu)$ consisting of analytic functions.

Fix a point $z \in B$. Since the functional e_z given by $e_z(f) = f(z), f \in L_a^2(B, d\nu)$, is continuous, there exists a function $K(\cdot, z) \in L_a^2(B, d\nu)$ such that

$$f(z) = \int_{B} f(w) \overline{K(w, z)} d\nu(w)$$

by the Riesz representation theorem. The function K(z,w) is called the Bergman reproducing kernel in $L_a^2(B,d\nu)$. It is well known that $K(z,w)=\frac{1}{(1-\langle z,w\rangle)^{n+1}}(\mathrm{See}\ [9]).$

Let $0 and <math>s \in \mathbb{R}$. The holomorphic Besov *p*-spaces $\mathcal{B}_p^s(B)$ with weight *s* is defined by the space of all holomorphic functions *f* on the unit ball *B* such that

$$\| f \|_{p,s} = \left\{ \int_B (Qf)^p(z) (1 - \| z \|^2)^s d\lambda(z) \right\}^{\frac{1}{p}} < \infty.$$

Here $d\lambda(z) = K(z,z)d\nu(z) = (1-\parallel z\parallel^2)^{-n-1}d\nu(z)$ is an invariant volume measure with respect to the Bergman metric on B.

For a fixed $p \in (0, \infty)$, $\mathcal{B}_p^s(B)$ is an increasing family of function spaces in s; that is, if $-\infty < s \le t < +\infty$, then $\mathcal{B}_p^s(B) \subset \mathcal{B}_p^t(B)$. The holomorphic Besov p-space $\mathcal{B}_p^s(B)$ with weight s include many well

known spaces as special case. $\mathcal{B}_p^s(B)$ is the usual Hardy space $H^p(B)$ for s=n, the Bergman space $L_a^p(B)$ for s=n+1. In particular, the diagonal Besov space $\mathcal{B}_p^0(B)$ are shown to be the Möbius invariant subsets of the Bloch space(See [3]).

In recent years, there have been many papers focused on studying the Besov space and it's applications (See [4], [6], [7] and [10]).

In section 2, we will find conditions such that $(1 - ||z||)^s (Qf)^p(z)$ is bounded on B.

The orthogonal projection operator P from $L^2(B,d\nu)$ to $L^2_a(B,d\nu)$ is denoted by

$$Pf(z) = \int_{B} f(w)K(z, w)d\nu(w).$$

P is called the Bergman projection. The Bergman projection is used in many areas related with Hankel operators and Toeplitz operators (See [1],[8],[11] and [12]).

The measure μ_r is the weighted Lebesgue measure:

$$d\mu_r(z) = c_r (1 - ||z||^2)^r d\nu(z)$$

where r > -1 is fixed, and c_r is a normalization constant such that $\mu_r(B) = 1$. Define the Bergman projection type operator P_r by

$$P_r f(z) = \int_B \frac{f(w)}{(1 - \langle z, w \rangle)^{n+r+1}} d\mu_r(w).$$

In section 3, we will find conditions such that P_r is bounded operator from $L^p(B, d\mu_r)$ to the holomorphic Besov p-spaces $\mathcal{B}_p^s(B)$ with weight

2. Holomorphic Besov p-space $\mathcal{B}_p^s(B)$ with weight s

The traditional holomorphic Besov space $\mathcal{B}_p(\Omega)$ is a subspace of $L^2_a(\Omega)$ with semi-norm

$$\|f\|_{\mathcal{B}_p} = \left\{ \int_{\Omega} (\nabla f)^p(z) \delta_{\Omega}(z)^p d\lambda(z) \right\}^{\frac{1}{p}} < \infty$$

where $\delta_{\Omega}(z)/2$ is the distance from z to $\partial\Omega$. It is known that the fact $\int_{\Omega} \delta_{\Omega}(z)^{-q} d\nu(z) = \infty$ when $q \geq 1$ implies that $\mathcal{B}_p(\Omega) = \mathbb{C}$ when $p \leq n$ and Ω is a smoothly bounded strictly pseudo convex domain in \mathbb{C}^n .

If Ω is the unit ball B in \mathbb{C}^n and ν is the Lebesgue measure in \mathbb{C}^n normalized by $\nu(\Omega) = 1$, we can find the following result.

THEOREM 2.1. Let $n \geq 2$ and $0 . If <math>f \in H(B)$ and

$$\int_{B} (Qf)^{p}(z)d\lambda(z) < \infty,$$

then f is constant.

Proof. See [3], Lemma 2.11.

These results show that the above semi-norm is not natural when $p \leq n$. In this paper, we will consider the holomorphic Besov p-space $\mathcal{B}_p^s(B)$ with weight s.

Let $a \in B$ and let P_a be the orthogonal projection of \mathbb{C}^n onto the subspace generated by a, which is given by $P_0 = 0$, and

$$P_a z = \frac{\langle z, a \rangle}{\langle a, a \rangle} a, \quad if \quad a \neq 0.$$

Let $Q_a = I - P_a$. Define φ_a on B by

$$\varphi_a(z) = \frac{a - P_a z - \sqrt{1 - \|a\|^2} Q_a z}{1 - \langle z, a \rangle}.$$

Theorem 2.2. For every $a \in B$, φ_a has the following properties:

(i) The identity

$$1 - \langle \varphi_a(z), \varphi_a(w) \rangle = \frac{(1 - \|a\|^2)(1 - \langle z, w \rangle)}{(1 - \langle z, a \rangle)(1 - \langle a, w \rangle)}$$

holds for all $z \in \overline{B}, w \in \overline{B}$.

(ii) The identity

$$1 - \| \varphi_a(z) \|^2 = \frac{(1 - \| a \|^2)(1 - \| z \|^2)}{|1 - \langle z, a \rangle|^2}$$

holds for every $z \in \overline{B}$.

(iii) φ_a is a homeomorphism of \overline{B} onto \overline{B} .

Proof. See [9], Theorem 2.2.2.

THEOREM 2.3. For $z \in B$, c is real, t > -1, define

$$I_{c,t}(z) = \int_{B} \frac{(1 - ||w||^{2})^{t}}{|1 - \langle z, w \rangle|^{n+1+c+t}} d\nu(w).$$

Then.

- (i) $I_{c,t}(z)$ is bounded in B if c < 0;
- (ii) $I_{0,t}(z) \approx -\log(1 ||z||^2)$ as $||z|| \to 1^-$; (iii) $I_{c,t}(z) \approx (1 ||z||^2)^{-c}$ as $||z|| \to 1^-$ if c > 0.

Proof. See [9], Proposition 1.4.10.

LEMMA 2.4. If f is holomorphic and $\frac{Qf(w)}{1-\|w\|^2}$ is Lebesgue integrable on B, then

$$Qf(0) \le (n+1) \int_{B} Qf(w) (1 - ||w||^{2})^{n} d\lambda(w).$$

Proof. By the definition of Bergman metric,

$$b_B^2(z,\xi) = (n+1)\frac{(1-\|z\|^2)\|\xi\|^2 + |\langle z,\xi\rangle|^2}{(1-\|z\|^2)^2}$$

$$\leq (n+1)\frac{(1-\|z\|^2)\|\xi\|^2 + \|z\|^2\|\xi\|^2}{(1-\|z\|^2)^2}$$

$$\leq (n+1)\frac{\|\xi\|^2}{(1-\|z\|^2)^2}.$$

By the mean value theorem,

$$f(t\eta) = \int_{B} f \circ \varphi_{t\eta}(w) d\nu(w)$$

for $f \in H(B), \eta \in B$ and $t \in [0, 1]$.

$$\begin{split} |\langle \nabla f(0), \eta \rangle| &= \left| \int_{B} \langle \nabla f(-w), \left[\frac{d}{dt} \varphi_{t\eta}(w) \right]_{t=0} \rangle d\nu(w) \right| \\ &= \left| \int_{B} \langle \nabla f(-w), \eta - \langle w, \eta \rangle w \rangle d\nu(w) \right| \\ &\leq \int_{B} \frac{\left| \langle \nabla f(-w), \frac{\eta - \langle w, \eta \rangle w}{\|\eta - \langle w, \eta \rangle w\|} \rangle \right|}{b_{B} \left(-w, \frac{\eta - \langle w, \eta \rangle w}{\|\eta - \langle w, \eta \rangle w\|} \right)} b_{B} (-w, \eta - \langle w, \eta \rangle w) d\nu(w) \\ &\leq (n+1) \int_{B} Qf(w) b_{B} (-w, \eta - \langle w, \eta \rangle w) d\nu(w) \\ &\leq (n+1) \int_{B} \frac{Qf(w)}{1 - \|w\|^{2}} d\nu(w) \\ &\leq (n+1) \int_{B} (1 - \|w\|^{2})^{n} Qf(w) d\lambda(w). \end{split}$$

Thus,

$$Qf(0) \le (n+1) \int_B Qf(w) (1 - ||w||^2)^n d\lambda(w).$$

THEOREM 2.5. Let 1 . If s is a real number such that <math>-np < s < n and $||f||_{p,s} < \infty$, then $(1-||z||^2)^s (Qf)^p(z)$ is bounded on B.

Proof. Let $\frac{1}{p} + \frac{1}{q} = 1$ where q > 1. If s < n, then t = (n-s)q + s - n - 1 > -1. If -np < s, then nq + sq - s > 0. By Theorem 2.3,

$$\left(\int_{B} \frac{(1-\|\xi\|^{2})^{(n-s)q}}{|1-\langle z,\xi\rangle|^{2nq}} (1-\|\xi\|^{2})^{s} d\lambda(\xi)\right)^{1/q} \\
= \left(\int_{B} \frac{(1-\|\xi\|^{2})^{t}}{|1-\langle z,\xi\rangle|^{n+1+t+(nq+sq-s)}} d\nu(\xi)\right)^{1/q} \\
\approx (1-\|z\|^{2})^{-n-s+s/q} \\
\approx (1-\|z\|^{2})^{-n-s/p}.$$

By Lemma 2.4,

$$Qf(0) \le (n+1) \int_{B} Qf(w) (1 - ||w||^{2})^{n} d\lambda(w).$$

Put $\xi = \varphi_z(w)$. By Theorem 2.2,

$$Qf(z) = Q(f \circ \varphi_z)(0)$$

$$\leq (n+1) \int_B Q(f \circ \varphi_z)(w)(1 - ||w||^2)^n d\lambda(w)$$

$$\leq (n+1) \int_B Qf(\xi)(1 - ||\varphi_z(\xi)||^2)^n d\lambda(\xi)$$

$$\leq (n+1) \int_B Qf(\xi) \frac{(1 - ||z||^2)^n (1 - ||\xi||^2)^n}{|1 - \langle z, \xi \rangle|^{2n}} d\lambda(\xi)$$

$$\leq (n+1)(1 - ||z||^2)^n \left(\int_B (Qf)^p (\xi)(1 - ||\xi||^2)^s d\lambda(\xi) \right)^{1/p}$$

$$\left(\int_B \frac{(1 - ||\xi||^2)^{(n-s)q}}{|1 - \langle z, \xi \rangle|^{2nq}} (1 - ||\xi||^2)^s d\lambda(\xi) \right)^{1/q}$$

where the last inequality follows from Hölder inequality for $\frac{1}{p} + \frac{1}{q} = 1$. This implies that

$$Qf(z) \le C(1- ||z||^2)^{-s/p} ||f||_{p,s}$$

for some constant C. This shows that if s is a real number such that -np < s < n and $||f||_{p,s} < \infty$, then $(1-||z||^2)^s (Qf)^p(z)$ is bounded on B.

3. Bounded Bergman projection type operator related with Besov space

In [10], Timoney showed that the linear space of all holomorphic function $f:B\longrightarrow \mathbb{C}$ which satisfy

$$\sup_{z \in B} (1 - \parallel z \parallel^2) \parallel \nabla f(z) \parallel < \infty$$

is equivalent to the space of all holomorphic function which satisfy

$$\sup_{z \in B} Qf(z) < \infty.$$

THEOREM 3.1. Let p > 2n and s > n. Then for every $f \in H(B)$,

$$\int_{B} (Qf)^{p}(z) (1 - \| z \|^{2})^{s} d\lambda(z) \approx \int_{B} \| \nabla f(z) \|^{p} (1 - \| z \|^{2})^{p+s} d\lambda(z)$$

Let $L_{a,r}^2 = L_a^2(B, d\mu_r)$ be the subspace of $L^2(B, d\mu_r)$ consisting of analytic functions. If we equip $L_{a,r}^2$ with the norm $||f||_{2,r} = \sqrt{\int_B |f|^2 d\mu_r}$, then $L_{a,r}^2$ is a Banach space for each r > -1.

Fix a point $z \in B$. Since the functional e_z given by $e_z(f) = f(z), f \in L^2_{a,r}$, is continuous, there exists a function $k_{r,z} \in L^2_{a,r}$ such that

$$f(z) = \int_{B} f(w) \overline{k_{r,z}(w)} d\mu_{r}(w)$$

by the Riesz representation theorem. The function $K_r(z, w) = \overline{k_{r,z}(w)}$ is called the weighted Bergman kernel. Also it is well known that

$$K_r(z, w) = \frac{1}{(1 - \langle z, w \rangle)^{r+n+1}}$$

(See [9]). It was shown in [5] that if $f \in L^1_{a.r}, r > -1$, then

$$f(z) = \int_{B} \frac{f(w)}{(1 - \langle z, w \rangle)^{n+r+1}} d\mu_r(w).$$

Suppose $1 \leq p < +\infty$ and r > 0. Let $L_{a,r}^p$ be the subspace of $L^p(B, d\mu_r)$ consisting of analytic functions. Define Bergman projection type operator P_r by

$$P_r f(z) = \int_B \frac{f(w)}{(1 - \langle z, w \rangle)^{n+r+1}} d\mu_r(w).$$

Since $P_r f = f$ for all analytic f in $L^1(B, d\mu_r)$, P_r is a projection from $L^1(B, d\mu_r)$ onto $L^1_a(B, d\mu_r)$.

In [2], the author proved that P_r is a bounded projection operator from $L^p(B, d\nu)$ onto $L^p_a(B, d\nu)$.

In the proof of Theorem 3.2, we will use $C_{n,r}$ to denote constant depending only on n and r, but it is not always the same at each appearance.

THEOREM 3.2. Let p > 2n and r > 0. If $f \in L^p(B, d\mu_r)$, then

$$||P_r f||_{p,s} \le C_{n,r} ||f||_{L^p(B,d\mu_r)}$$

for s > 2n + r + 1.

Proof. Differentiating under the integral sign, we obtain

$$\frac{\partial}{\partial z_j}(P_r f)(z) = (n+r+1) \int_B \frac{f(w)(-\overline{w_j})}{(1-\langle z,w\rangle)^{n+r+2}} d\mu_r(w)$$

for $j = 1, 2, \dots, n$. This shows that

$$\| \nabla P_r f(z) \| \le C_{n,r} \int_B \frac{|f(w)|}{|1 - \langle z, w \rangle|^{n+r+2}} d\mu_r(w).$$

Let $\frac{1}{p} + \frac{1}{q} = 1$. By the Hölder inequality,

$$\| \nabla P_r f(z) \|^p$$

$$\leq \left(C_{n,r} \int_B \frac{|f(w)|}{|1 - \langle z, w \rangle|^{n+r+2}} d\mu_r(w) \right)^p$$

$$= C_{n,r} \int_B |f(w)|^p d\mu_r(w) \left(\int_B \frac{1}{|1 - \langle z, w \rangle|^{q(n+r+2)}} d\mu_r(w) \right)^{p/q} .$$

By Theorem 2.3,

$$\begin{split} & \int_{B} \frac{1}{|1 - \langle z, w \rangle|^{q(n+r+2)}} d\mu_{r}(w) \\ & = c_{r} \int_{B} \frac{(1 - \| w \|^{2})^{r}}{|1 - \langle z, w \rangle|^{q(n+r+2)}} d\nu(w) \\ & = c_{r} \int_{B} \frac{(1 - \| w \|^{2})^{r}}{|1 - \langle z, w \rangle|^{n+1+r+1+(q-1)(n+r+2)}} d\nu(w) \\ & \approx (1 - \| z \|^{2})^{-1 - (q-1)(n+r+2)}. \end{split}$$

By Theorem 3.1,

$$\| P_{r}f \|_{p,s}^{p} = \int_{B} (QP_{r}f)^{p}(z)(1-\|z\|^{2})^{s}d\lambda(z)$$

$$\approx \int_{B} (1-\|z\|^{2})^{p} \| \nabla P_{r}f(z) \|^{p} (1-\|z\|^{2})^{s}d\lambda(z)$$

$$\leq C_{n,r} \| f \|_{L^{p}(B,d\mu_{r})}^{p} \int_{B} (1-\|z\|^{2})^{p}$$

$$\left(\int_{B} \frac{1}{|1-\langle z,w\rangle|^{q(n+r+2)}} d\mu_{r}(w) \right)^{p/q} (1-\|z\|^{2})^{s}d\lambda(z)$$

$$\leq C_{n,r} \| f \|_{L^{p}(B,d\mu_{r})}^{p}$$

$$\int_{B} (1-\|z\|^{2})^{p+s-n-1-(p/q)(1+(q-1)(n+r+2))} d\nu(z).$$
If $s > n-p+(p/q)(1+(q-1)(n+r+2))=2n+r+1$, then
$$\| P_{r}f \|_{p,s} \leq C_{n,r} \| f \|_{L^{p}(B,d\mu_{r})}.$$

References

[1] J. Arazy, S. D. Fisher, and J. Peetre, *Hankel operators on weighted Bergman spaces*, Amer. J. Math. **110** (1988), 989-1054.

[2] K. S. Choi, Notes On the Bergman Projection type operators in \mathbb{C}^n , Commun. Korean Math. Soc. **21** (2006), no. 1, 65-74.

[3] K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, Lecture Notes series (Seoul Nat. Univ.) 21 (1993), no. 1.

[4] K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in Cⁿ, Jour. Manuscripta Math. 71 (1991), no. 71, 67-81.

[5] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^n , J. Korean Math. Soc. **35** (1998), 177-189.

[6] S. G. Krantz and S-Y. Li, On the decomposition theorems for Hardy spaces in domains in \mathbb{C}^n and applications, J. Fourier Anal. Appl. 2 (1995), 65-107.

[7] S.-Y. Li and W. Loo, Characterization for Besov spaces and applications, Part I, J. Math. Anal. Appl. 310 (2005), 477-491.

[8] D. H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.

[9] W. Rudin, Function theory in the unit ball of Cⁿ, Springer Verlag, New York, 1980.

[10] R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267.

[11] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278.

- [12] K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50.
- [13] K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York, (1990).

*

Department of Information Security Konyang University Nonsan 320-711, Republic of Korea *E-mail*: ksc@konyang.ac.kr